Botnet Detection Architecture Based on Heterogeneous Multi-sensor Information Fusion

نویسندگان

  • Hailong Wang
  • Jie Hou
  • Zhenghu Gong
چکیده

As technology has been developed rapidly, botnet threats to the global cyber community are also increasing. And the botnet detection has recently become a major research topic in the field of network security. Most of the current detection approaches work only on the evidence from single information source, which can not hold all the traces of botnet and hardly achieve high accuracy. In this paper, a novel botnet detection architecture based on heterogeneous multi-sensor information fusion is proposed. The architecture is designed to carry out information integration in the three fusion levels of data, feature, and decision. As the core component, a feature extraction module is also elaborately designed. And an extended algorithm of the Dempster-Shafer (D-S) theory is proved and adopted in decision fusion. Furthermore, a representative case is provided to illustrate that the detection architecture can effectively fuse the complicated information from various sensors, thus to achieve better detection effect.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Fault Tolerant Nonlinear Model Predictive Controller Incorporating an UKF-Based Centralized Measurement Fusion Scheme

A new Fault Tolerant Controller (FTC) has been presented in this research by integrating a Fault Detection and Diagnosis (FDD) mechanism in a nonlinear model predictive controller framework. The proposed FDD utilizes a Multi-Sensor Data Fusion (MSDF) methodology to enhance its reliability and estimation accuracy. An augmented state-vector model is developed to incorporate the occurred senso...

متن کامل

Heterogeneous Multi-sensor Fusion Based on an Evidential Network for Fall Detection

The multi-sensor fusion can provide more accurate and reliable information compared to information from each sensor separately taken. Moreover, the data from multiple heterogeneous sensors present in the medical surveillance systems have different degrees of uncertainty. Among multi-sensor data fusion techniques, Bayesian methods and evidence theories such as Dempster-Shafer Theory (DST), are c...

متن کامل

MHIDCA: Multi Level Hybrid Intrusion Detection and Continuous Authentication for MANET Security

Mobile ad-hoc networks have attracted a great deal of attentions over the past few years. Considering their applications, the security issue has a great significance in them. Security scheme utilization that includes prevention and detection has the worth of consideration. In this paper, a method is presented that includes a multi-level security scheme to identify intrusion by sensors and authe...

متن کامل

BotOnus: an online unsupervised method for Botnet detection

Botnets are recognized as one of the most dangerous threats to the Internet infrastructure. They are used for malicious activities such as launching distributed denial of service attacks, sending spam, and leaking personal information. Existing botnet detection methods produce a number of good ideas, but they are far from complete yet, since most of them cannot detect botnets in an early stage ...

متن کامل

Model-based Approach for Multi-sensor Fault Identification in Power Plant Gas Turbines

In this paper, ‎the multi-sensor fault diagnosis in the exhaust temperature sensors of a V94.2 heavy duty gas turbine is presented‎. ‎A Laguerre network-based fuzzy modeling approach is presented to predict the output temperature of the gas turbine for sensor fault diagnosis‎. Due to the nonlinear dynamics of the gas turbine, in these models the Laguerre filter parts are related to the linear d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • JNW

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2011